On the composition operators on Besov and Triebel–Lizorkin spaces with power weights

نویسندگان

چکیده

Let $G:\mathbb R\rightarrow \mathbb R$ be a continuous function. Under some assumptions on $G$, $s,\alpha ,p$ and $q$ we prove that $$\{G(f):f\in A_{p,q}^{s}(\mathbb R^{n},|\cdot |^{\alpha })\}\subset })$$ implie

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

On dilation operators in Besov spaces

We consider dilation operators Tk : f → f(2·) in the framework of Besov spaces B p,q(R ) when 0 < p ≤ 1. If s > n ` 1 p − 1 ́ , Tk is a bounded linear operator from B p,q(R ) into itself and there are optimal bounds for its norm. We study the situation on the line s = n `

متن کامل

Necessary conditions on composition operators acting between Besov spaces . The case 1 < s < n / p . III

Let G : R → R be a continuous function. Denote by TG the corresponding composition operator which sends f to G(f). Then we investigate consequences for the parameters s, p, and r of the inclusion TG (B p,q (R)) ⊂ B p,∞(R) . Here B p,q denotes a Besov space. 1991 Mathematics Subject Classification: 46E35, 47H30. Running title: Composition operators

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Polonici Mathematici

سال: 2022

ISSN: ['0066-2216', '1730-6272']

DOI: https://doi.org/10.4064/ap220314-23-9